skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Zhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Abstract Turbulent energy dissipation is a fundamental process in plasma physics that has not been settled. It is generally believed that the turbulent energy is dissipated at electron scales leading to electron energization in magnetized plasmas. Here, we propose a micro accelerator which could transform electrons from isotropic distribution to trapped, and then to stream (Strahl) distribution. From the MMS observations of an electron-scale coherent structure in the dayside magnetosheath, we identify an electron flux enhancement region in this structure collocated with an increase of magnetic field strength, which is also closely associated with a non-zero parallel electric field. We propose a trapping model considering a field-aligned electric potential together with the mirror force. The results are consistent with the observed electron fluxes from ~50 eV to ~200 eV. It further demonstrates that bidirectional electron jets can be formed by the hourglass-like magnetic configuration of the structure. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Personalized recommender systems play a crucial role in modern society, especially in e-commerce, news, and ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as constructing ones. The common offline evaluation strategy is holding out some user-interacted items from training data and evaluating the performance of recommendation models based on how many items they can retrieve. Specifically, for any hold-out item or so-called target item for a user, the recommendation models try to predict the probability that the user would interact with the item and rank it among overall items, which is calledglobal evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-out/target items. Based on the specific ranks, some metrics likeRecall@KandNDCG@Kcan be calculated to further quantify the quality of the recommender model. Instead of ranking the target items among all items, Koren first proposed to rank them among a smallsampled set of items, then quantified the performance of the models, which is calledsampling evaluation. Ever since then, there has been a large amount of work adopting sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-Kmetrics. In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections between sampling evaluation and global evaluation. We reveal the approximately linear relationship between sampling with respect to its global counterpart in terms of the top-KRecall metric. Second, we propose a new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire population. After the estimated rank distribution is obtained, the approximation of the global metric can be further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for small top-Kvalues in sampling evaluation is challenging, we propose a novel adaptive sampling method that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the sampling methods presented. 
    more » « less
  4. Abstract The morphology and motion of auroras have been widely studied due to their indications on magnetospheric processes. Here, we report a new kind of “auroral curls,” which have wavelengths in the mesoscale (∼100 km) and propagate azimuthally. Utilizing data from the Chinese Antarctic Zhongshan Station (the all‐sky imager and the high‐frequency radar), the Active Magnetosphere and Planetary Electrodynamics Response Experiment and the Defense Meteorological Satellite Program, we analyze an event occurred on 23 April 2019. We find these curls are fine structures in the poleward boundary of multiple arcs. Corresponding field‐aligned currents manifest as a series of longitudinally arranged pairs, while ionospheric flow velocities nearby oscillate with periods in the Pc 5 band. Observational evidence suggests these curls are connected with ultra‐low frequency (ULF) waves, which opens the possibility of using auroras to globally image ULF waves. 
    more » « less
  5. Since Rendle and Krichene argued that commonly used sampling-based evaluation metrics are “inconsistent” with respect to the global metrics (even in expectation), there have been a few studies on the sampling-based recommender system evaluation. Existing methods try either mapping the sampling-based metrics to their global counterparts or more generally, learning the empirical rank distribution to estimate the top-K metrics. However, despite existing efforts, there is still a lack of rigorous theoretical understanding of the proposed metric estimators, and the basic item sampling also suffers from the “blind spot” issue, i.e., estimation accuracy to recover the top-K metrics when K is small can still be rather substantial. In this paper, we provide an in-depth investigation into these problems and make two innovative contributions. First, we propose a new item-sampling estimator that explicitly optimizes the error with respect to the ground truth, and theoretically highlights its subtle difference against prior work. Second, we propose a new adaptive sampling method that aims to deal with the “blind spot” problem and also demonstrate the expectation-maximization (EM) algorithm can be generalized for such a setting. Our experimental results confirm our statistical analysis and the superiority of the proposed works. This study helps lay the theoretical foundation for adopting item sampling metrics for recommendation evaluation and provides strong evidence for making item sampling a powerful and reliable tool for recommendation evaluation. 
    more » « less
  6. Abstract Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail,Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials.C. aspersumsecretes three mucus—one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative “mucomics” approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences betweenC. aspersummucus shows how considering structure at all levels can inform the design of mucus-inspired materials. 
    more » « less